Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 139
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
Food Funct ; 15(5): 2628-2644, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38358014

ABSTRACT

As one of the most significant pathological changes of diabetic nephropathy (DN), tubulointerstitial fibrosis (TIF) had a close relationship with tubulointerstitial inflammation (TI), and the occurrence of TI could have resulted from the disrupted tight junctions (TJs) of renal tubular epithelial cells (RTECs). Studies have demonstrated that sodium butyrate (NaB), a typical short chain fatty acid (SCFA), played an important regulatory role in intestinal TJs and inflammation. In this study, our in vivo and in vitro results showed that accompanied by TI, renal tubular TJs were gradually disrupted in the process of DN-related TIF. In HG and LPS co-cultured HK-2 cells and db/db mice, NaB treatment regained the TJs of RTECs via the sphingosine 1-phosphate receptor-1 (S1PR1)/AMPK signaling pathway, relieving inflammation. Small interfering RNA of S1PR1, S1PR1 antagonist W146 and agonist SEW2871, and AMPK agonist AICAR were all used to further confirm the essential role of the S1PR1/AMPK signaling pathway in NaB's TJ protection in RTECs in vitro. Finally, NaB administration not only improved the renal function and TIF, but also relieved the TI of db/db mice. These findings suggested that the use of NaB might be a potential adjuvant treatment strategy for DN-associated TIF, and this protective effect was linked to the TJ modulation of RTECs via the S1PR1/AMPK signaling pathway, leading to the improvement of TI.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Mice , Animals , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Butyric Acid/pharmacology , Butyric Acid/metabolism , AMP-Activated Protein Kinases/metabolism , Tight Junctions/metabolism , Epithelial Cells/metabolism , Fibrosis , Diabetes Mellitus/metabolism
2.
Adv Mater ; 36(14): e2309748, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38165653

ABSTRACT

One-for-all phototheranostics, referring to a single component simultaneously exhibiting multiple optical imaging and therapeutic modalities, has attracted significant attention due to its excellent performance in cancer treatment. Benefitting from the superiority in balancing the diverse competing energy dissipation pathways, aggregation-induced emission luminogens (AIEgens) are proven to be ideal templates for constructing one-for-all multimodal phototheranostic agents. However, to this knowledge, the all-round AIEgens that can be triggered by a second near-infrared (NIR-II, 1000-1700 nm) light have not been reported. Given the deep tissue penetration and high maximum permissible exposure of the NIR-II excitation light, herein, this work reports for the first time an NIR-II laser excitable AIE small molecule (named BETT-2) with multimodal phototheranostic features by taking full use of the advantage of AIEgens in single molecule-facilitated versatility as well as synchronously maximizing the molecular donor-acceptor strength and conformational distortion. As formulated into nanoparticles (NPs), the high performance of BETT-2 NPs in NIR-II light-driven fluorescence-photoacoustic-photothermal trimodal imaging-guided photodynamic-photothermal synergistic therapy of orthotopic mouse breast tumors is fully demonstrated by the systematic in vitro and in vivo evaluations. This work offers valuable insights for developing NIR-II laser activatable one-for-all phototheranostic systems.


Subject(s)
Nanoparticles , Neoplasms , Animals , Mice , Light , Phototherapy/methods , Theranostic Nanomedicine/methods , Cell Line, Tumor
3.
BMC Cardiovasc Disord ; 24(1): 76, 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38281937

ABSTRACT

BACKGROUND: The protective effect of Coenzyme Q10 (CoQ10) on the cardiovascular system has been reported, however, whether it can promote early recovery of cardiac function and alleviate cardiac remodeling after myocardial infarction (MI) remains to be elucidated. Whether CoQ10 may regulate the macrophage-mediated pro-inflammatory response after MI and its potential mechanism are worth further exploration. METHODS: To determine the baseline plasma levels of CoQ10 by LC-MS/MS, healthy controls and MI patients (n = 11 each) with age- and gender-matched were randomly enrolled. Additional MI patients were consecutively enrolled and randomized into the blank control (n = 59) or CoQ10 group (n = 61). Follow-ups were performed at 1- and 3-month to assess cardiac function after percutaneous coronary intervention (PCI). In the animal study, mice were orally administered CoQ10/vehicle daily and were subjected to left anterior descending coronary artery (LAD) ligation or sham operation. Echocardiography and serum BNP measured by ELISA were analyzed to evaluate cardiac function. Masson staining and WGA staining were performed to analyze the myocardial fibrosis and cardiomyocyte hypertrophy, respectively. Immunofluorescence staining was performed to assess the infiltration of IL1ß/ROS-positive macrophages into the ischemic myocardium. Flow cytometry was employed to analyze the recruitment of myeloid immune cells to the ischemic myocardium post-MI. The expression of inflammatory indicators was assessed through RNA-seq, qPCR, and western blotting (WB). RESULTS: Compared to controls, MI patients showed a plasma deficiency of CoQ10 (0.76 ± 0.31 vs. 0.46 ± 0.10 µg/ml). CoQ10 supplementation significantly promoted the recovery of cardiac function in MI patients at 1 and 3 months after PCI. In mice study, compared to vehicle-treated MI mice, CoQ10-treated MI mice showed a favorable trend in survival rate (42.85% vs. 61.90%), as well as significantly alleviated cardiac dysfunction, myocardial fibrosis, and cardiac hypertrophy. Notably, CoQ10 administration significantly suppressed the recruitment of pro-inflammatory CCR2+ macrophages into infarct myocardium and their mediated inflammatory response, partially by attenuating the activation of the NLR family pyrin domain containing 3 (NLRP3)/Interleukin-1 beta (IL1ß) signaling pathway. CONCLUSIONS: These findings suggest that CoQ10 can significantly promote early recovery of cardiac function after MI. CoQ10 may function by inhibiting the recruitment of CCR2+ macrophages and suppressing the activation of the NLRP3/IL1ß pathway in macrophages. TRIAL REGISTRATION: Date of registration 09/04/2021 (number: ChiCTR2100045256).


Subject(s)
Myocardial Infarction , Percutaneous Coronary Intervention , Ubiquinone , Animals , Humans , Mice , Chromatography, Liquid , Disease Models, Animal , Fibrosis , Inflammation/metabolism , Interleukin-1beta/metabolism , Macrophages/metabolism , Myocardial Infarction/pathology , Myocardium/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Tandem Mass Spectrometry , Ubiquinone/analogs & derivatives , Ubiquinone/blood , Ventricular Remodeling
4.
J Ethnopharmacol ; 323: 117689, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38160869

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Autoimmune Thyroiditis (AIT) is a common refractory autoimmune disease of the endocrine system that may eventually lead to complete loss of thyroid function, with subsequent severe effects on the metabolism. Because of the deficiency in current clinical management of AIT, the need for alternative therapies is highlighted. With its multi-component and multi-target characteristics, Chinese medicine has good potential as an alternative therapy for AIT. AIM OF THE STUDY: The aim of this study was to systematically summarize the clinical efficacy and safety evaluation of TCM and its active ingredients in the treatment and regulation of AIT. Additionally, we provide an in-depth discussion of the relevant mechanisms and molecular targets to understand the protective effects of traditional Chinese medicine on AIT and explore new ideas for clinical treatment. MATERIALS AND METHODS: The literature related to "Hashimoto", "autoimmune thyroiditis", "traditional Chinese medicine," and "Chinese herbal medicine" was systematically summarized and reviewed from Web of Science Core Collection, PubMed, CNKI, and other databases. Domestic and international literature were analyzed, compared, and reviewed. RESULTS: An increasing number of studies have demonstrated that herbal medicines can intervene in immunomodulation, with pharmacological effects such as antibody lowering, anti-inflammatory, anti-apoptotic thyroid follicular cells, regulation of intestinal flora, and regulation of estrogen and progesterone levels. The signaling pathways and molecular targets of the immunomodulatory effects of Chinese herbal medicine for AIT may include Fas/FasL, Caspase, BCL-2, and TLRs/MyD88/NF-κB et al. CONCLUSIONS: The use of Chinese herbs in the treatment and management of AIT is clinically experienced, satisfactory, and safe. Future studies may evaluate the influence of herbal medicines on the occurrence and development of AIT by modulating the interaction between immune factors and conventional signaling pathways.


Subject(s)
Drugs, Chinese Herbal , Plants, Medicinal , Thyroiditis, Autoimmune , Humans , Medicine, Chinese Traditional/adverse effects , Thyroiditis, Autoimmune/drug therapy , Thyroiditis, Autoimmune/epidemiology , Thyroiditis, Autoimmune/etiology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Treatment Outcome
5.
Mol Biotechnol ; 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37910337

ABSTRACT

Cough-variant asthma (CVA) has been recognized as the initial stage or pre-asthmatic state of classic asthma, which characterized by cough as the primary clinical presentation. Inhaled glucocorticoids, oral leukotriene receptor antagonists and antihistamines are the clinical treatments, but their efficacy is not satisfactory. Some traditional Chinese medicine (TCM) has been reported to have certain advantages in the treatment of CVA, but the underlying molecular mechanisms are still unclear. Recent research has indicated that Anacyclus pyerhrurm (L) DC. is commonly used in the treatment of human diseases. The aim of our study was to evaluate the anti-inflammatory and anti-oxidative mechanism of the ethanol extract of Anacyclus pyrethrum (L) DC. root (EEAP) in a model of CVA. In our study, we indicated that EEAP ameliorated CVA by reducing cough frequency and inflammatory effect and oxidative stress in an in vivo rat model of CVA. In addition, EEAP ameliorated LPS-induced cell apoptosis and regulated inflammatory effect and oxidative stress in vitro. Mechanistically, EEAP exerted anti-inflammatory effects through regulating the TLR4/NF-κB pathway and Wnt/ß-catenin pathway, and overexpressing TLR4 or activating the Wnt/ß-catenin pathway by SKL2001 reversed EEAP-exerted effects in LPS-exposed BEAS-2B and 16-HBE cells. In conclusion, EEAP attenuated cell apoptosis, inflammation and oxidative stress through restraining the TLR4/NF-κB pathway and Wnt/ß-catenin pathway in CVA, which shown that EEAP might be a promising therapeutic agent for CVA and may provide a theoretical basis for clinical treatment with CVA patients.

6.
BMC Plant Biol ; 23(1): 574, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37978431

ABSTRACT

BACKGROUND: Broussonetia papyrifera (L.) L'Hér. ex Vent. has the characteristics of strong stress resistance, high crude protein content, and pruning tolerance. It is an ecological, economic, and medicinal plant. Polyploid plants usually perform better than their corresponding diploid plants in terms of nutrients, active substances, and stress resistance. RESULTS: In this study, the leaves, calli, and seeds of diploid B. papyrifera were used for tetraploid induction by colchicine. The induction effect of colchicine on B. papyrifera was summarized through the early morphology, chromosome count and flow cytometry. It was concluded that the best induction effect (18.6%) was obtained when the leaves of B. papyrifera were treated in liquid MS (Murashige and Skoog) medium containing 450 mg·L-1 colchicine for 3 d. The comparative analysis of the growth characteristics of diploid and tetraploid B. papyrifera showed that tetraploid B. papyrifera has larger ground diameter, larger stomata, thicker palisade tissue and thicker sponge tissue than diploid B. papyrifera. In addition, the measurement of photosynthetic features also showed that tetraploids had higher chlorophyll content and higher photosynthetic rates. CONCLUSION: This study showed that tetraploid B. papyrifera could be obtained by treating leaves, callus and seeds with liquid and solid colchicine, but the induction efficiency was different. Moreover, there were differences in stomata, leaf cell structure and photosynthetic features between tetraploid B. papyrifera and its corresponding diploid. The induced tetraploid B. papyrifera can provide a technical basis and breeding material for the creation of B. papyrifera germplasm resources in the future.


Subject(s)
Broussonetia , Morus , Tetraploidy , Broussonetia/genetics , Colchicine/pharmacology , Plant Breeding
7.
Chin Med ; 18(1): 122, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37735401

ABSTRACT

BACKGROUND: Curdione is a sesquiterpene isolated from Curcumae Rhizoma that possesses high biological activity and extensive pharmacological effects. As a traditional Chinese medicine, Curcumae Rhizoma can inhibit the development of many types of cancer, especially colorectal cancer. However, the anti-colorectal mechanism of its monomer curdione remains unclear. METHODS: Colorectal cancer (CRC) cells were treated with curdione at doses of 12.5 µM, 25 µM, and 50 µM, and then the cells' activity was measured with methyl thiazolyl tetrazolium (MTT). Nude mice were administered different doses of curdione subcutaneously and oxaliplatin by tail vein injection, and then hematoxylin-eosin (HE) staining was adopted to examine tumor histology. Moreover, flow cytometry was applied to detect reactive oxygen species in cells and tissues. Kits were employed to detect the levels of iron ions, malondialdehyde, lipid hydroperoxide, and glutathione. Polymerase chain reaction (PCR) and Western blotting were adopted to detect ferroptosis and m6A modification-related factors. A methylation spot hybridization assay was performed to measure changes in overall methylation. SLC7A11 and HOXA13 were measured by MeRIP-qPCR. The shRNA-METTL14 plasmid was constructed to verify the inhibitory effect of curdione on CRC. RESULTS: A dose-dependent decrease in activity was observed in curdione-treated cells. Curdione increased the accumulation of reactive oxygen species in CRC cells and tumor tissues, greatly enhanced the levels of malondialdehyde, lipid hydroperoxide and Fe2+, and lowered the activity of glutathione. According to the qPCR and Western blot results, curdione promoted the expression of METTL14 and YTHDF2 in CRC cells and tissues, respectively, and decreased the expression of SLC7A11, SLC3A2, HOXA13, and glutathione peroxidase 4. Additionally, in animal experiments, the curdione-treated group showed severe necrosis of tumor cells, as displayed by HE staining. Furthermore, compared with the control group, levels of m6A modifying factors (namely, SLC7A11 and HOXA13) were increased in the tissues after drug intervention. METTL14 knockdown was followed by an increase in CRC cell activity and glutathione levels. However, the levels of reactive oxygen species, malondialdehyde, and iron ions decreased. The expression levels of SLC7A11, SLC3A2, HOXA13, and GPX4 were all increased after METTL14 knockdown. CONCLUSION: The results suggest that curdione induces ferroptosis in CRC by virtue of m6A methylation.

8.
Int J Biol Macromol ; 253(Pt 3): 126871, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37716662

ABSTRACT

Nitrogen (N) fertilizer impacts the grain quality of common buckwheat, but the effects and regulatory mechanisms of N on various protein parameters of buckwheat are not fully understood. The purpose of this study was to investigate the particle morphology, structural and gel properties, and regulation mechanism of buckwheat protein under four N levels. The bulk density, surface hydrophobicity, particle size, and thermal properties of the buckwheat protein were maximized through the optimal N application (180 kg N/ha), further enhancing the thermal stability of the protein. N application increased the ß-sheet content and reduced the random coil content. Appropriate N fertilizer input enhanced the tertiary structure stability and gel elasticity of buckwheat protein by promoting hydrophobic interactions, disulfide bonds, ionic bonds, storage modulus and loss modulus. The differentially expressed proteins induced by N are primarily enriched in small ribosomal subunit and ribosome, improving protein quality mainly by promoting the synthesis of hydrophobic amino acids. Future agriculture should pay attention to the hydrophobic amino acid content of buckwheat to effectively improve protein quality. This study further advances the application of buckwheat protein in the field of food processing and provides a theoretical basis for the extensive development and utilization of buckwheat protein.


Subject(s)
Amino Acids , Fagopyrum , Amino Acids/metabolism , Fagopyrum/chemistry , Nitrogen/metabolism , Fertilizers , Hydrophobic and Hydrophilic Interactions
9.
J Med Food ; 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37725004

ABSTRACT

The global prevalence of diabetes and its related complications has increased drastically and is currently a worldwide health challenge. There is still an urgent need for safe and effective natural products and supplements as alternative and/or adjunctive therapeutic interventions. Nowadays, people pay more and more attention to the nutritional and medicinal value of food ingredients. As one of the most widely employed spices in cooking, pepper also has novel medicinal values attributed to its main component, piperine (Pip). Pip is an amide alkaloid with pleiotropic properties such as anti-inflammatory, antioxidant, anti-cancer, and other related activities. Recently, Pip has received increasing scientific attention due to its antidiabetic and related complication properties. However, the values of existing studies are limited due to being scattered and unsystematic. The present study reviewed the therapeutic potential and possible mechanisms of Pip in diabetes and related complications, with the aim of providing promising candidates for the development of novel and effective alternative and/or adjunctive nutraceutical agents for the management of diabetes.

10.
Mol Neurobiol ; 60(11): 6383-6394, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37453993

ABSTRACT

Neurological diseases place a substantial burden on public health and have a serious impact on the quality of life of patients. Despite the multifaceted pathological process involved in the occurrence and development of these neurological diseases, each disease has its own unique pathological characteristics and underlying molecular mechanisms which trigger their onset. Thus, it is unlikely to achieve effective treatment of neurological diseases by means of a single approach. To this end, we reason that it is pivotal to seek an efficient strategy that implements multitherapeutic targeting and addresses the multifaceted pathological process to overcome the complex issues related to neural dysfunction. In recent years, natural medicinal plant-derived monomers have received extensive attention as new neuroprotective agents for treatment of neurological disorders. Fisetin, a flavonoid, has emerged as a novel potential molecule that enhances neural protection and reverses cognitive abnormalities. The neuroprotective effects of fisetin are attributed to its multifaceted biological activity and multiple therapeutic mechanisms associated with different neurological disorders. In this review article, we summarize recent research progression regarding the pharmacological effects of fisetin in treating several neurological diseases and the potential mechanisms.


Subject(s)
Nervous System Diseases , Neuroprotective Agents , Humans , Neuroprotection , Quality of Life , Flavonols , Flavonoids/pharmacology , Flavonoids/therapeutic use , Nervous System Diseases/drug therapy , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
11.
Antiviral Res ; 216: 105666, 2023 08.
Article in English | MEDLINE | ID: mdl-37429528

ABSTRACT

Zika virus (ZIKV) has garnered global attention due to its association with severe congenital defects including microcephaly. However, there are no licensed vaccines or drugs against ZIKV infection. Pregnant women have the greatest need for treatment, making drug safety crucial. Alpha-linolenic acid (ALA), a polyunsaturated ω-3 fatty acid, has been used as a health-care product and dietary supplement due to its potential medicinal properties. Here, we demonstrated that ALA inhibits ZIKV infection in cells without loss of cell viability. Time-of-addition assay revealed that ALA interrupts the binding, adsorption, and entry stages of ZIKV replication cycle. The mechanism is probably that ALA disrupts membrane integrity of the virions to release ZIKV RNA, inhibiting viral infectivity. Further examination revealed that ALA inhibited DENV-2, HSV-1, influenza virus and SARS-CoV-2 infection dose-dependently. ALA is a promising broad-spectrum antiviral agent.


Subject(s)
COVID-19 , Dengue , Herpes Simplex , Orthomyxoviridae , Zika Virus Infection , Zika Virus , Female , Humans , Pregnancy , Zika Virus Infection/drug therapy , alpha-Linolenic Acid/pharmacology , alpha-Linolenic Acid/therapeutic use , Antiviral Agents/therapeutic use , SARS-CoV-2 , Dengue/drug therapy , Herpes Simplex/drug therapy , Virus Replication
12.
Phytother Res ; 37(10): 4722-4739, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37443453

ABSTRACT

Epithelial ovarian cancer (EOC) is the most common and fatal subtype of ovarian malignancies, with no effective therapeutics available. Our previous studies have demonstrated extraordinary suppressive efficacy of enterolactone (ENL) on EOC. A chemotherapeutic agent, trabectedin (Trabe), is shown to be effective on ovarian cancer, especially when combined with other therapeutics, such as pegylated liposomal doxorubicin or oxaliplatin. Thrombospondin 1 (THBS1), a kind of matrix glycoprotein, plays important roles against cancer development through inhibiting angiogenesis but whether it is involved in the suppression of EOC by ENL or Trabe remains unknown. To test combined suppressive effects of ENL and Trabe on EOC and possible involvement of THBS1 in the anticancer activities of ENL and Trabe. The EOC cell line ES-2 was transfected with overexpressed THBS1 by lentivirus vector. We employed tube formation assay to evaluate the anti-angiogenesis activity of ENL and of its combined use with Trabe after THBS1 overexpression and established drug intervention and xenograft nude mouse cancer models to assess the in vivo effects of the hypothesized synergistic suppression between the agents and the involvement of THBS1. Mouse fecal samples were collected for 16S rDNA sequencing and microbiota analysis. We detected strong inhibitory activities of ENL and Trabe against the proliferation and migration of cancer cells and observed synergistic effects between ENL and Trabe in suppressing EOC. ENL and Trabe, given either separately or in combination, could suppress the tube formation capability of human microvascular endothelial cells, and this inhibitory effect became even stronger with THBS1 overexpression. In the ENL plus Trabe combination group, the expression of tissue inhibitor of metalloproteinases 3 and cluster of differentiation 36 was both upregulated, whereas matrix metalloproteinase 9, vascular endothelial growth factor, and cluster of differentiation 47 were all decreased. With the overexpression of THBS1, the results became even more pronounced. In animal experiments, combined use of ENL and Trabe showed superior inhibitory effects to either single agent and significantly suppressed tumor growth, and the overexpression of THBS1 further enhanced the anti-cancer activities of the drug combination group. ENL and Trabe synergistically suppress EOC and THBS1 could remarkably facilitate the synergistic anticancer effects of ENL and Trabe.


Subject(s)
Ovarian Neoplasms , Thrombospondin 1 , Animals , Mice , Humans , Female , Carcinoma, Ovarian Epithelial , Trabectedin/therapeutic use , Thrombospondin 1/therapeutic use , Vascular Endothelial Growth Factor A , Endothelial Cells/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/genetics
13.
Am J Chin Med ; 51(5): 1105-1126, 2023.
Article in English | MEDLINE | ID: mdl-37357176

ABSTRACT

Fermentation is a processing method used in traditional Chinese medicine (TCM). However, traditional fermentation methods suffer from poor production control. In contrast, probiotic fermented herbal medicine (PFHM) offers advantages such as the use of pure strains, a controllable process, and the ability to produce a variety of active enzymes during fermentation. As a result, PFHM has become a research hotspot. This review focuses on the progress, challenges, and opportunities in the research of PFHM. The use of probiotic enzymes during fermentation alters the active ingredients of TCM, resulting in positive pharmacological effects such as increased active ingredients, reduced toxicity, new pharmacological effects, and the reuse of herbal residues. PFHM has the potential to transfer the metabolic transformation of the effective components of TCM by intestinal flora outside the body during production and preparation, which has a broad application prospect. However, due to the complexity of the chemical composition of TCM, the mechanism of PFHM requires further investigation. Finally, we discuss the prospects of industrializing PFHM, which is essential for promoting the innovation and modernization of TCM.


Subject(s)
Drugs, Chinese Herbal , Plants, Medicinal , Probiotics , Fermentation , Medicine, Chinese Traditional/methods
14.
Int J Hyperthermia ; 40(1): 2225817, 2023.
Article in English | MEDLINE | ID: mdl-37364893

ABSTRACT

OBJECTIVE: To investigate the clinical efficacy of thermal ablation in the treatment of pulmonary carcinoid (PC) tumor. METHODS: Data of patients with inoperable PC diagnosed from 2000 to 2019 were obtained from the SEER database and analyzed according to different therapeutic modality: thermal ablation vs non-ablation. Propensity score matching (PSM) was used to reduce intergroup differences. Kaplan-Meier curves and the log-rank test were used to compare intergroup differences of overall survival (OS) and lung cancer-specific survival (LCSS). Cox proportional risk models were used to reveal prognostic factors. RESULTS: After PSM, the thermal ablation group had better OS (p < .001) and LCSS (p < .001) than the non-ablation group. Subgroup analysis stratified by age, sex, histologic type and lymph node status subgroups showed similar survival profile. In the subgroup analysis stratified by tumor size, the thermal ablation group showed better OS and LCSS than those of the non-ablation group for tumors ≤3.0 cm, not statistically significant for tumors >3.0 cm. Subgroup analysis by M stage showed that thermal ablation was superior to non-ablation in OS and LCSS for patients with M0 stage, but no significant difference was found in subgroups with distant metastatic disease. Multivariate analysis showed that thermal ablation was an independent prognostic factor for OS (HR: 0.34, 95% CI: 0.25-0.46, p < .001) and LCSS (HR: 0.23, 95%CI: 0.12-0.43, p < .001). CONCLUSION: For patients with inoperable PC, thermal ablation might be a potential treatment option, especially in M0-stage with tumor size ≤3 cm.


Subject(s)
Carcinoid Tumor , Carcinoma, Neuroendocrine , Hyperthermia, Induced , Lung Neoplasms , Humans , Lung Neoplasms/pathology , Treatment Outcome , Proportional Hazards Models , Carcinoid Tumor/surgery , Carcinoid Tumor/pathology , Carcinoma, Neuroendocrine/pathology , Neoplasm Staging
15.
Obes Res Clin Pract ; 17(4): 308-317, 2023.
Article in English | MEDLINE | ID: mdl-37385909

ABSTRACT

BACKGROUND: Although overweight and obese people have a higher risk of type 2 diabetes incidence than normal-weight individuals, the efficacy of zinc supplementation in blood sugar control in overweight and obese people remained unknown. This meta-analysis attempted to address this issue. METHODS: Databases including PubMed, Embase, and the Cochrane Library were searched from inception until May 2022 to identify randomized controlled trials (RCTs) investigating the effects of zinc supplementation among participants who were overweight or obese without language restriction. It is a random-effect meta-analysis that analyzed the impact of zinc supplementation on fasting glucose (FG) (i.e., primary outcome) and other variables including fasting insulin (FI), homeostasis model assessment-insulin resistance index (HOMA-IR), glycated hemoglobin (HbA1c), high-sensitivity C-reactive protein (hs-CRP), and 2-hour postprandial glucose (2 h- PG). RESULTS: Analysis of 12 eligible RCTs involving 651 overweight/obese participants demonstrated that zinc supplementation significantly improves FG (weighted mean difference [WMD]: -8.57 mg/dL; 95% confidence interval [CI]: -14.04 to -3.09 mg/dL, p = 0.002), HOMA-IR (WMD: -0.54; 95% CI: -0.78 to -0.30, p < 0.001), HbA1c (WMD: -0.25%; 95% CI: -0.43% to -0.07%, p = 0.006), and 2 h-PG (WMD: -18.42 mg/dL; 95% CI: -25.04 to -11.79 mg/dL, p < 0.001) compared to those in the control group. After conducting subgroup analyses, we found that the primary outcome, FG, showed more significant results in the subgroups with Asia, Zinc supplementation alone, higher dose (≥30 mg) and patients with diabetes. CONCLUSION: Our meta-analysis indicated that zinc supplementation benefits blood sugar control in overweight and obese populations, with an especially significant reduction in FG.

16.
New Phytol ; 239(5): 1637-1650, 2023 09.
Article in English | MEDLINE | ID: mdl-37366046

ABSTRACT

Resource complementarity can contribute to enhanced ecosystem functioning in diverse plant communities, but the role of facilitation in the enhanced complementarity is poorly understood. Here, we use leaf manganese concentration ([Mn]) as a proxy for rhizosheath carboxylate concentration to explore novel mechanisms of complementarity mediated by phosphorus (P) facilitation. In pot experiments, we showed that mixtures involving Carex korshinskyi, an efficient P-mobilizing species, exhibited greater biomass and relative complementarity effect than combinations without C. korshinskyi on P-deficient soils. Compared with monocultures, leaf [Mn] and [P] of species that are inefficient at P mobilization increased by 27% and 21% when grown with C. korshinskyi (i.e. interspecific P facilitation via carboxylates) rather than next to another inefficient P-mobilizing species. This experimental result was supported by a meta-analysis including a range of efficient P-mobilizing species. Phosphorus facilitation enhanced the relative complementarity effect in low-P environments, related to a greater change in several facilitated species of their root morphological traits relative to those in monoculture. Using leaf [Mn] as a proxy, we highlight a vital mechanism of interspecific P facilitation via belowground processes and provide evidence for the pivotal role of P facilitation mediated by the plasticity of root traits in biodiversity research.


Subject(s)
Ecosystem , Phosphorus , Phosphorus/metabolism , Plants/metabolism , Biomass , Biodiversity
17.
Article in English | MEDLINE | ID: mdl-37018294

ABSTRACT

Tinnitus is an auditory phantom percept that affects the perception of sound in the patient's ears, and the incidence of prolonged tinnitus is as high as ten to fifteen percent. Acupuncture is a unique treatment method in Chinese medicine, and it has great advantages in the treatment of tinnitus. However, tinnitus is a subjective symptom of patients, and there is currently no objective detection method to reflect the improvement effect of acupuncture on tinnitus. We used functional near-infrared spectroscopy (fNIRS) to explore the effect of acupuncture on the cerebral cortex of tinnitus patients. We collected the scores of the tinnitus disorder inventory (THI), tinnitus evaluation questionnaire (TEQ), hamilton anxiety scale (HAMA), and hamilton depression scale (HAMD) of eighteen subjects before and after acupuncture treatment, and the fNIRS signals of these subjects in sound-evoked activity before and after acupuncture treatment. According to the fNIRS detection results of tinnitus patients, acupuncture increased the concentration of oxygenated hemoglobin in the temporal lobe of tinnitus patients, and affected the activation of the auditory cortex. The study may reflect the neural mechanisms of acupuncture treatment for tinnitus and ultimately help to provide an objective evaluation method for the therapeutic effect of acupuncture treatment for tinnitus.

18.
Zhongguo Zhong Yao Za Zhi ; 48(3): 736-743, 2023 Feb.
Article in Chinese | MEDLINE | ID: mdl-36872237

ABSTRACT

This study aims to investigate the effect of Astragali Radix-Curcumae Rhizoma(AC) combination on the proliferation, migration, and invasion of colon cancer HT-29 cells based on epithelial-mesenchymal transition(EMT). HT-29 cells were respectively treated with 0, 3, 6 and 12 g·kg~(-1) AC-containing serum for 48 h. The survival and growth of cells were measured by thiazole blue(MTT) colorimetry, and the proliferation, migration, and invasion of cells were detected by 5-ethynyl-2'-deoxyuridine(EdU) test and Transwell assay. Cell apoptosis was examined by flow cytometry. The BALB/c nude mouse model of subcutaneous colon cancer xenograft was established, and then model mice were classified into blank control group, 6 g·kg~(-1) AC group, and 12 g·kg~(-1) AC group. The tumor weight and volume of mice were recorded, and the histopathological morphology of the tumor was observed based on hematoxylin-eosin(HE) staining. The expression of apoptosis-associated proteins B-cell lymphoma-2-associated X protein(Bax), cysteine-aspartic acid protease-3(caspase-3), and cleaved caspase-3, and EMT-associated proteins E-cadherin, MMP9, MMP2 and vimentin in HT-29 cells and mouse tumor tissues after the treatment of AC was determined by Western blot. The results showed that cell survival rate and the number of cells at proliferation stage decreased compared with those in the blank control group. The number of migrating and invading cells reduced and the number of apoptotic cells increased in the administration groups compared with those in the blank control group. As for the in vivo experiment, compared with the blank control group, the administration groups had small tumors with low mass and shrinkage of cells and karyopycnosis in the tumor tissue, indicating that the AC combination may improve EMT. In addition, the expression of Bcl2 and E-cadherin increased and the expression of Bax, caspase-3, cleaved caspase-3, MMP9, MMP2, and vimentin decreased in HT-29 cells and tumor tissues in each administration group. In summary, the AC combination can significantly inhibit the proliferation, invasion, migration, and EMT of HT-29 cells in vivo and in vitro and promote the apoptosis of colon cancer cells.


Subject(s)
Colonic Neoplasms , Matrix Metalloproteinase 2 , Humans , Animals , Mice , Caspase 3 , Matrix Metalloproteinase 9 , Vimentin , HT29 Cells , bcl-2-Associated X Protein , Cell Proliferation
19.
Microb Cell Fact ; 22(1): 51, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36918890

ABSTRACT

BACKGROUND: ε-Poly-L-lysine (ε-PL) is a natural and safe food preservative that is mainly produced by filamentous and aerobic bacteria Streptomyces albulus. During ε-PL biosynthesis, a large amount of ATP is used for the polymerization of L-lysine. A shortage of intracellular ATP is one of the major factors limiting the increase in ε-PL production. In previous studies, researchers have mainly tried to increase the oxygen supply to enhance intracellular ATP levels to improve ε-PL production, which can be achieved through the use of two-stage dissolved oxygen control, oxygen carriers, heterologous expression of hemoglobin, and supplementation with auxiliary energy substrates. However, the enhancement of the intracellular ATP supply by constructing an ATP regeneration system has not yet been considered. RESULTS: In this study, a polyphosphate kinase (PPK)-mediated ATP regeneration system was developed and introduced into S. albulus to successfully improve ε-PL production. First, polyP:AMP phosphotransferase (PAP) from Acinetobacter johnsonii was selected for catalyzing the conversion of AMP into ADP through an in vivo test. Moreover, three PPKs from different microbes were compared by in vitro and in vivo studies with respect to catalytic activity and polyphosphate (polyP) preference, and PPK2Bcg from Corynebacterium glutamicum was used for catalyzing the conversion of ADP into ATP. As a result, a recombinant strain PL05 carrying coexpressed pap and ppk2Bcg for catalyzing the conversion of AMP into ATP was constructed. ε-PL production of 2.34 g/L was achieved in shake-flask fermentation, which was an increase of 21.24% compared with S. albulus WG608; intracellular ATP was also increased by 71.56%. In addition, we attempted to develop a dynamic ATP regulation route, but the result was not as expected. Finally, the conditions of polyP6 addition were optimized in batch and fed-batch fermentations, and the maximum ε-PL production of strain PL05 in a 5-L fermenter was 59.25 g/L by fed-batch fermentation, which is the highest ε-PL production reported in genetically engineered strains. CONCLUSIONS: In this study, we proposed and developed a PPK-mediated ATP regeneration system in S. albulus for the first time and significantly enhanced ε-PL production. The study provides an efficient approach to improve the production of not only ε-PL but also other ATP-driven metabolites.


Subject(s)
Adenosine Triphosphate , Polylysine , Fermentation , Regeneration
20.
J Ethnopharmacol ; 310: 116349, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-36924861

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Kunxian capsule (KXC) is a new traditional Chinese medicine drug included in "The key science and technology achievements" in the Ninth Five Year Plan of China. KXC has been clinically used for more than 10 years in the treatment of lupus nephritis (LN). However, the underlying role and molecular mechanism of KXC in LN remain unclear. AIM OF THE STUDY: This study aimed to explore the efficacy and potential mechanisms of KXC through pharmacological network, in vitro and in vivo studies. MATERIALS AND METHODS: Pharmacological network analysis of KXC treatment in LN was performed using data acquired from the Traditional Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP, https://old.tcmsp-e.com/tcmsp.php) and NCBI Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/database). HK-2 cells were chosen as an in vitro model of the tubular immune response by simulation with interferon γ (IFN-γ). MRL/lpr mice were used to explore the mechanism of KXC in vivo. Finally, the specific active molecules of KXC were further analyzed by molecular docking. RESULTS: The pharmacological network analysis showed that STAT1 is a key factor in the effects of KXC. In vitro and in vivo experiments confirmed the therapeutic effect of KXC on LN renal function and tubular inflammation. The protective effect of KXC is mediated by STAT1 blockade, which further reduces T-cell infiltration and improves the renal microenvironment in LN. Two main components of KXC, Tripterygium hypoglaucum (H.Lév.) Hutch (Shanhaitang) and Epimedium brevicornu Maxim (Yinyanghuo) could block JAK1-STAT1 activation. Furthermore, we found 8 molecules that could bind to the ATP pocket of JAK1 with high affinities by performing docking analysis. CONCLUSIONS: KXC inhibits renal damage and T-cell infiltration in LN by blocking the JAK1-STAT1 pathway.


Subject(s)
Lupus Nephritis , Animals , Mice , Lupus Nephritis/drug therapy , Molecular Docking Simulation , Signal Transduction , Mice, Inbred MRL lpr , Kidney/metabolism , STAT1 Transcription Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL